Towards the mitigation of correlation effects in anomaly detection for hyperspectral imagery

نویسندگان

  • Jason P. Williams
  • Trevor J. Bihl
  • Kenneth W. Bauer
  • Jason P Williams
  • Trevor J Bihl
  • Kenneth W Bauer
چکیده

This research involves simulating remote sensing conditions using previously collected hyperspectral imagery (HSI) data. The Reed–Xiaoli (RX) anomaly detector is well-known for its unsupervised ability to detect anomalies in hyperspectral images. However, the RX detector assumes uncorrelated and homogeneous data, both of which are not inherent in HSI data. To address this difficulty, we propose a new method termed linear RX (LRX). Whereas RX places a test pixel at the center of a moving window, LRX employs a line of pixels above and below the test pixel. In this paper, we contrast the performance of LRX, a variant of LRX called iterative linear RX (ILRX), the recently introduced iterative RX (IRX) algorithm, and the support vector data description (SVDD) algorithm, a promising new HSI anomaly detector. Through experimentation, the line of pixels used by ILRX shows an advantage over RX and IRX in that it appears to mitigate the deleterious effects of correlation due to the spatial proximity of the pixels; while the iterative adaptation taken from IRX simultaneously eliminates outliers allowing ILRX an advantage over LRX. Such innovations to the basic RX algorithm allow for the reduction of bias and error in the estimation of the mean vector and covariance matrix, thus accounting for a portion of the spatial correlation inherent in HSI data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Separation Between Anomalous Targets and Background Based on the Decomposition of Reduced Dimension Hyperspectral Image

The application of anomaly detection has been given a special place among the different   processings of hyperspectral images. Nowadays, many of the methods only use background information to detect between anomaly pixels and background. Due to noise and the presence of anomaly pixels in the background, the assumption of the specific statistical distribution of the background, as well as the co...

متن کامل

A New Dictionary Construction Method in Sparse Representation Techniques for Target Detection in Hyperspectral Imagery

Hyperspectral data in Remote Sensing which have been gathered with efficient spectral resolution (about 10 nanometer) contain a plethora of spectral bands (roughly 200 bands). Since precious information about the spectral features of target materials can be extracted from these data, they have been used exclusively in hyperspectral target detection. One of the problem associated with the detect...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

Analysis of Hyperspectral Imagery for Oil Spill Detection Using SAM Unmixing Algorithm Techniques

Oil spill is one of major marine environmental challenges. The main impacts of this phenomenon are preventing light transmission into the deep water and oxygen absorption, which can disturb the photosynthesis process of water plants. In this research, we utilize SpecTIR airborne sensor data to extract and classify oils spill for the Gulf of Mexico Deepwater Horizon (DWH) happened in 2010. For t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013